Potential Immunocompetence of Proteolytic Fragments Produced by Proteasomes before Evolution of the Vertebrate Immune System
نویسندگان
چکیده
To generate peptides for presentation by major histocompatibility complex (MHC) class I molecules to T lymphocytes, the immune system of vertebrates has recruited the proteasomes, phylogenetically ancient multicatalytic high molecular weight endoproteases. We have previously shown that many of the proteolytic fragments generated by vertebrate proteasomes have structural features in common with peptides eluted from MHC class I molecules, suggesting that many MHC class I ligands are direct products of proteasomal proteolysis. Here, we report that the processing of polypeptides by proteasomes is conserved in evolution, not only among vertebrate species, but including invertebrate eukaryotes such as insects and yeast. Unexpectedly, we found that several high copy ligands of MHC class I molecules, in particular, self-ligands, are major products in digests of source polypeptides by invertebrate proteasomes. Moreover, many major dual cleavage peptides produced by invertebrate proteasomes have the length and the NH2 and COOH termini preferred by MHC class I. Thus, the ability of proteasomes to generate potentially immunocompetent peptides evolved well before the vertebrate immune system. We demonstrate with polypeptide substrates that interferon gamma induction in vivo or addition of recombinant proteasome activator 28alpha in vitro alters proteasomal proteolysis in such a way that the generation of peptides with the structural features of MHC class I ligands is optimized. However, these changes are quantitative and do not confer qualitatively novel characteristics to proteasomal proteolysis. The data suggest that proteasomes may have influenced the evolution of MHC class I molecules.
منابع مشابه
The proteolytic fragments generated by vertebrate proteasomes: structural relationships to major histocompatibility complex class I binding peptides.
Proteasomes are involved in the proteolytic generation of major histocompatibility complex (MHC) class I epitopes but their exact role has not been elucidated. We used highly purified murine 20S proteasomes for digestion of synthetic 22-mer and 41/44-mer ovalbumin partial sequences encompassing either an immunodominant or a marginally immunogenic epitope. At various times, digests were analyzed...
متن کاملApoptosis as a Potential Target in Therapeutic and Vaccine Interventions against Parasitic Diseases
Apoptosis is a physiological cell death that occurs under normal conditions in major biological processes, including the removal of old, damaged, extra, or harmful cells. It plays an important role in natural evolution, tissue homeostasis, removal of cells damaged or infected by viruses, and removal of immune cells activated against self-antigens. The purpose of this review was to examine the r...
متن کاملHIV-1 Envelope Resistance to Proteasomal Cleavage: Implications for Vaccine Induced Immune Responses
BACKGROUND Antigen processing involves many proteolytic enzymes such as proteasomes and cathepsins. The processed antigen is then presented on the cell surface bound to either MHC class I or class II molecules and induces/interacts with antigen-specific CD8+ and CD4+ T-cells, respectively. Preliminary immunological data from the RV144 phase III trial indicated that the immune responses were bia...
متن کاملLink between Organ-specific Antigen Processing by 20S Proteasomes and CD8+ T Cell–mediated Autoimmunity
Adoptive transfer of cross-reactive HSP60-specific CD8(+) T cells into immunodeficient mice causes autoimmune intestinal pathology restricted to the small intestine. We wondered whether local immunopathology induced by CD8(+) T cells can be explained by tissue-specific differences in proteasome-mediated processing of major histocompatibility complex class I T cell epitopes. Our experiments demo...
متن کاملMinocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation
Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 186 شماره
صفحات -
تاریخ انتشار 1997